Multi-criteria evaluation of cropping systems: multi attributes hierarchies and linear programming methods

Veronique Alary, François Affholder, Eric Scopel, Jose Humberto Valadares, Marc Corbeels
A need for multi-criteria evaluation methods

- How sustainable is a certain cropping system?
 - social
 - economic
 - environmental

- several point of views among stakeholders (farmers, development workers, researchers, policy makers...)
Main features of two major approaches

- Optimization Under Multiple Constraints (OUMC), or “linear programming”
- Multi Attributes Hierarchy (MAH)
Study in family agriculture of central Brazil using OUMC and MAH

- DMC systems (DMCr, DMCb, DMCb) ex-ante evaluated as environmentally sound alternatives to Conventional Systems (CS)
- Subsistence farms in transition toward dairy production with increasing needs for maize and fodder, cattle herd rapidly evolving
Optimization Under Multiple Constraints (OUMC) approach

1. Structure of the farm model

Activities
- Cropping Systems x Environment
 - list of CS (including list of expected products per time period)
 - list of Env. Units
 - list of possible combinations (CS x EU)
- Livestock Systems x Env
 -

Prices
- costs of inputs, labour, products (per period)
 - Off farm activities

Farm resources
- land (per EU, Land Value Units)
- labor force (time period)
- initial cash and stocks (products, animals,....)

Decision model
- goal(s) (e.g., max farm income)
- constraints (e.g., food and other consumption needs)
- risk aversion / perception

Model outputs
- set of production activities (area in CS x EU....)
- Income
- Env externalities
 -

« Technical coefficients »
- (per activity x time period)
 - yields (per P)
 - inputs
 - labour force
 - env externalities (e.g., N lixiviated)

Solver

Prices
- of inputs, labour, products (per period)

Scenarios of change

Farm resources
- land (per EU, Land Value Units)
- labor force (time period)
- initial cash and stocks (products, animals,....)

Decision model
- goal(s) (e.g., max farm income)
- constraints (e.g., food and other consumption needs)
- risk aversion / perception

Model outputs
- set of production activities (area in CS x EU....)
- Income
- Env externalities
 -

« Technical coefficients »
- (per activity x time period)
 - yields (per P)
 - inputs
 - labour force
 - env externalities (e.g., N lixiviated)

Solver

Prices
- of inputs, labour, products (per period)

Scenarios of change

Farm resources
- land (per EU, Land Value Units)
- labor force (time period)
- initial cash and stocks (products, animals,....)

Decision model
- goal(s) (e.g., max farm income)
- constraints (e.g., food and other consumption needs)
- risk aversion / perception
Optimization Under Multiple Constraints (OUMC) approach. 2. Modelling procedure

• data acquisition (“technical coefficients”): survey + agronomic trials (+literature, expert knowledge)
• validation with baseline scenario (innovative CS not present in the list of possible activities) on 6 farms representing 3 farm types: simulated matching actual farm plan (= set of activities with their level: ha, number of animals, labour force sold/purchased, etc...)
• Introduction of innovative CS in the list of activities: do they appear in simulated farm plans and to what extent?
Examples of outputs from OUMC

1/2

Simulated increase in farm income permitted by the introduction of DMC in the list of possible activities
Examples of outputs from OUMC

2/2
Multi Attributes Hierarchy

- Participatory (farmers, development agents and researchers) definition of:
 - list of criteria covering the three dimensions of sustainability.
 - note (scale 1 to 5) given for each CS to each criterion
 - weights attributed to each criterion for criteria aggregation.
Comparative scoring for conventional (blue line) versus DMC system (red line) for each criteria in the bottom-up participative methodology. (Total Scoring DMC 85 and Conventional 65)
Results

• Same ranking of CS with the two methods: DMCr > DMCc = DMCb > Conventional systems when economic and social criteria predominate over environmental criteria

• Differing from “objective” environmentally based hierarchy (or the point of view of agronomists): DMCc > DMCb > DMCr > Conv Syst. on environmental criteria (erosion, nutrient leaching, herbicides use)

• Similar uncertainties in the two methods:
 – nutritional values of the cover crop as fodder for the dairy cows
 – labor requirements of DMC

• Same main research question generated by MAH and OUMC: need for more accurate data on agronomic performance (including quality as fodder) of the cover crops in DMC systems.
Tentative list of comparative advantages of the two methods

OUMC approach
- validation against actual farms
- “embedded” sensitivity analysis
- huge worldwide community of users sharing experience in forums + papers, manuals...
- screening windows of options,
- testing scenarios of change in the economic environment
- farm level assessment plus assessment of land and labour productivity of activities
- fully practicable ex-ante (when no farmer has experience or knowledge about the studied CS)

MAH
- point of view of farmers is explicit
- favours dialogue between farmers and scientists (and/or other stakeholders) and consensus building
- easy to describe / understand / learn
Tentative list of comparative drawbacks

- **OUMC**
 - apparent objectivity masking role of scientist’s point of view
 - difficult to describe / understand / learn

- **MAH**
 - apparent participatory approach masking role of scientist’s point of view
 - sensitivity analysis difficult due to thresholds, categorical data
 - cannot determine whether land or labour productivity is the most relevant criterion for economic evaluation of a given CS in a given farm
Conclusion

• MAH = useful discussion tool between stakeholders.
• OUMC = more objective, virtual test bench (what if...)
• None is free from subjectivity: prescriptive use should be avoided