Modelling plant diseases impact with the Belgian Crop Growth Monitoring System

M. El Jarroudi1, L. Kouadio1, B. Martin1, F. Giraud2, P. Delfosse3, L. Hoffmann3, Y. Curnel4, and B. Tychon1

1University of Liège, Arlon, Belgium
2Staphyt/BIORIZON, Martillac, France
3CRP-Gabriel Lippmann, Department Environment and agro-biotechnologies (EVA), Belvaux, Luxembourg
4Centre wallon de Recherches agronomiques, Agriculture et Milieu naturel, Systèmes agraires, Territoire et Technologies de l’Information, Rue de Liroux 9, 5030 Gembloux (Belgium)

ESA meeting - Montpellier
01/09/2010
Plan of the presentation

• Introduction
• Objectives
• Materials and methods
• Results
• Integration of a « disease module » into B-CGMS : calibration & validation
• Conclusions
Introduction

• B-CGMS : an integrated information system predicting reliable, timely and objective estimates of crop yields

No integration of the effects of diseases

Septoria tritici → major cause of yield loss

• Effects of contrasting diseases can be related to effects on green leaf area, or precisely, absorption of photosynthetically active radiation by healthy green tissues (Waggoner & Berger, 1987; Bryson et al., 1997)

• The yield of wheat is particularly related to leaf area duration between ear emergence and maturity (Thorne, 1966)
Objectives
to develop and to introduce a «diseases module» into B-CGMS
Materials and methods: the data

- **133 situations:** field – year – cultivar - fungicide treatment
- **Fields:** Schockville, Humain, Stehnen, Robelmont, Everlange
- **Years:** 2003 → 2006
- **Cultivars:** Drifter, Centenaire, Novalis, Koch, Caspart, Parador, Vivant, Achat, Flair, Aron, Urban, Dekan, Bussard, Akteur, Cubus, Rosario
- **Fungicide treatments:** Control, GS31, GS37, GS39, GS45, GS59, GS32-GS59, GS37-GS59
- **Field observations:** visually estimations of green leaf area and diseases symptoms (%)
Material and method: the model

\[\text{Green leaf area at time } t = 100 \times \exp\left(-\exp\left(-k \times (t-m)\right)\right) \]

- **k**: rate of reduction of green leaf area
- **m**: time to rise the inflection point

Material and method: the model's k value and m value impact.
Results

- No relationship between values of parameter \(k \) and grain yield.
- Highly significant correlation between values of parameter \(m \) and grain yield.

\[y = 2.9655x - 59.154 \]
\[R^2 = 0.7866 \]

\[y = 150.53 \ln(x) - 498 \]
\[R^2 = 0.809 \]

- Fungicide effects on \(m \) varied greatly among experiments and cultivars, reflecting the disease levels.
- Benefits of extending the life of the top three leaves for grain yield.
- Considering that parasitic pressure reduces leaves lifespan and therefore the photosynthetic capacity, this approach makes it possible to take into account the influence of this pressure on yield predictions in B-CGMS.
Integration of a « diseases module » into B - CGMS: How?

- Modification of one of the parameters influencing the leaf senescence: the SPAN parameter

 → by definition SPAN is the lifespan of leaves for a temperature of 35°C

- The initial value of the parameter SPAN is 31.3

Days after flag leaf emergence

Treated Control
Integration of a « disease module » into B-CGMS : calibration

\[y = 0.215794x + 20.509573 \]
\[R^2 = 0.46 \]

\[y = -0.012x^2 + 1.453x - 10.539 \]
\[R^2 = 0.53 \]
Integration of a « disease module » into B - CGMS : validation

With recalibration of SPAN parameter

with linear relation between m and SPAN

$y = 2.34x - 105.17$

$R^2 = 0.47$

With recalibration of SPAN parameter

$y = 2.35x - 105.72$

$R^2 = 0.57$
Conclusions

• Substantial improvement of yield assessments: R^2 from 0.11 to 0.57

• These results confirm the benefits of extending the life of the top three leaves for grain yield

• For a practical use: estimation for each grid or for a group of grids of the parameter m based on fields observations (network of observations)
Thank you for your attention