Integrated assessment of agricultural land use policies aiming at reducing nutrient pollution in Taihu Basin, China

Pytrik Reidsma
Shuyi Feng, Marcel Lubbers, Marloes van Loon, Chiakan Kang, Argyris Kanellopoulos, Joost Wolf, Martin van Ittersum, Herman van Keulen, Futian Qu

Plant Production Systems, Wageningen University
Public Administration, Nanjing Agricultural University

www.lupis.eu

LUPIS contract number GOCE-036955
Case study definition

Pre-modelling: Problem definition

Stakeholders

Case study description

System definition

Problem

Causal chains

Context

Sectors & scales

Data

Water pollution in Taihu Lake Basin

Legend

Boundary of cities

Waters

Boundary of Taihu Lake Basin
Land Use Policies and Sustainable Development in Developing Countries

Sectors & scales

Region
- North-west Taihu Lake Basin

Municipality
- Wuxi
- Changzhou
- Zhenjiang

Agricultural sector
- livestock
- perennial
- arable
- fish

Farm type
- off-farm employment
- size: low, high
- small, large
- 1, 2, 3, 4

Agricultural activity
- soil rotation technology
- clay, loam, sand, rice-wheat, rice-rapeseed, single crop
- current
- mechanical transplanting rice
- formula fertilizer
- site-specific nutrient management

Notes
- Boundary of Taihu Lake Basin
Scenarios: Policy options

Agricultural sector

1. Mechanical transplanting (MT)
2. Formula fertilizer application (FF) & Site-specific nutrient management (SSNM)
3. Buffer zones: change arable land to trees

Considering institutional context: policy evaluation, policy forum, stakeholders
Modelling

Pre-modelling: Problem definition
- Case study description
 - Problem
 - Context
- System definition
 - Causal chains
 - Sectors & scales
- Indicator selection
 - Land Use Functions
 - Indicators
- Scenario description
 - Base year
 - Baseline
 - Policy options

Modelling: Assessing impact of policy on indicators
- Review & selection of assessment tools
 - IA of land use
 - Regional problem
- Adaptation and/or development of assessment tools
 - TechnoGIN
 - FSSIM
- Apply assessment tools
 - Parameterization
 - Simulation

Stakeholders
- Data

Land Use Policies and Sustainable Development in Developing Countries
Modelling: Technical Coefficient Generator

- TechnoGIN, South East Asia (Ponsioen et al. 2006)
- Technical Coefficients:
 - Parameters describing Inputs & Outputs of Agricultural activities
 - Inputs: fertilisers, biocides, water, labour, etc.
 - Outputs: yield, income, pollution of fertilisers & biocides, etc.
- Base year
 - Averages of survey data: 320 farms
- Baseline
 - Continuation of trends in yields, prices
- Policy options
 - Technological innovations, based on “best farmer practice” from survey, literature, models ...

Farm type

Bio-economic model

TCG: Input-output relationships

Data → Model/Software

Agricultural activity
Modelling: Bio-economic model

- Farming Systems Simulator (FSSIM)
- Developed for European context in SEAMLESS (Van Ittersum et al., 2008; Louhichi et al., 2010)
- Optimization model
- Positive mathematical programming (PMP)
 - Calibration to current situation
 - Forecasting, not optimizing, future
- Programmed in GAMS
- Can be adapted to other conditions
Modelling: Structure FSSIM China

FSSIM-AM\(^1\)

FARM SURVEY DATA

DATA BASE
Farm resources (land, labour, ...), policy constraints, ...

INPUT/OUTPUT COEFFICIENTS

FSSIM-MP\(^2\)

DECLARATIVE PARAMETERS, VARIABLES AND EQUATIONS

INCOME ➔ **OBJECTIVE FUNCTION** ➔ **RISK**

INSTITUTIONAL ➔ **CONSTRAINT SYSTEM**

AGRONOMIC ➔ **POLICY**

ECONOMIC ➔ **FEEDING**

FINANCIAL

FSSIM-OUTPUT
- Farm income
- Positive/negative externalities
- Agricultural activity levels...

TechnoGIN-3 © 2010 V1.4
Technical Coefficient Generator for cropping systems in East and Southeast Asia
Post-modelling: LUF values

Pre-modelling: Problem definition
- Case study description
 - Problem
 - Context
- System definition
 - Causal chains
 - Sectors & scales
- Indicator selection
 - Land Use Functions
 - Indicators
- Scenario description
 - Base year
 - Baseline
 - Policy options

Modelling: Assessing impact of policy on indicators
- Review & selection of assessment tools
 - IA of land use
 - Regional problem
- Adaptation and/or development of assessment tools
 - TechnoGIN
 - FSSIM
- Apply assessment tools
 - Parameterization
 - Simulation

Post-modelling: Evaluating impact of policy on Sustainable Development
- Multi-criteria analysis
 - Land Use Function Values
 - Land Use Function Weights
 - Effective & feasible policy options

Land Use Policies and Sustainable Development in Developing Countries
Results at farm level: Wuxi farm type 1

- **Baseline:**
 - Available labour days limited
 - As labour wage ↑

- **Policy option:**
 - Stimulate SSNM by training & dissemination
 - Increase responsiveness to prices and yields (elasticity)

<table>
<thead>
<tr>
<th></th>
<th>Base year</th>
<th>Baseline</th>
<th>Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total area used</td>
<td>0.32</td>
<td>0.28</td>
<td>0.24</td>
</tr>
<tr>
<td>Single crop area</td>
<td>0.17</td>
<td>0.27</td>
<td>0.22</td>
</tr>
<tr>
<td>Double crop area</td>
<td>0.15</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Conventional</td>
<td>77%</td>
<td>61%</td>
<td>28%</td>
</tr>
<tr>
<td>Formula fertilizer</td>
<td>18%</td>
<td>33%</td>
<td>4%</td>
</tr>
<tr>
<td>Site-specific nutrient management</td>
<td>5%</td>
<td>7%</td>
<td>68%</td>
</tr>
<tr>
<td>Mechanical transplanting</td>
<td>15%</td>
<td>45%</td>
<td>64%</td>
</tr>
</tbody>
</table>
Results at farm level: Wuxi farm type 1

Policy option:
- Stimulate SSNM by training & dissemination
- Increase elasticity x 10
Post-modelling: effective & feasible policy options

- Site-specific nutrient management
 - Large potential to reduce nutrient leaching, higher yields
 - In 2008: FF used, but not according to SSNM principles
 - In 2015 baseline: SSNM not much adopted, higher labour use, knowledge needed
 - In 2015 policy: training required, subsidies, even then little increase

- Mechanical transplanting
 - In 2008: not always profitable
 - In 2015 baseline: reduces labour use, so high adoption
 - In 2015 policy: with more subsidies also profitable, can stimulate adoption of SSNM

- Buffer zones along water courses
 - In 2008: compensation payments do not always cover agricultural income/ha
 - Effective: 80-90% reduction in nutrient leaching

- General
 - Labour wages ↑ & off-farm employment ↑ -> labour availability ↓
 - From double to single cropping
 - Maintaining food production levels: subsidies needed

- Adoption & SD impact depends per farm type
- Regional impacts: aggregation
Concluding remarks

- Strong points of the approach, linking TechnoGIN-FSSIM:

 - Integrated assessment
 - of effects of technological and policy changes
 - on farming systems
 - i.e. economic, social, environmental
 - Analysis of trade-offs
 - for such changes in farming systems
 - e.g. pollution vs gross margins
 - Analysis of potential and constraints
 - for possible changes in farming systems to support policy implementation
 - e.g. labour, financial
Thanks for your attention

pytrik.reidsma@wur.nl
www.lupis.eu