Identification and elimination of yield gaps in oil palm plantations in Indonesia

T.H. Fairhurst, W. Griffiths, C. Donough, C. Witt, D. McLaughlin, K.E. Giller

Tropical Crop Consultants Ltd, Wye, UK
Private address, Cairns, Australia
International Plant Nutrition Institute (IPNI), Penang, Malaysia
World Wildlife Fund (WWF), Washington DC, USA
Wageningen University, Netherlands
Outline of presentation

- Context
- Theory of yield gap management and best management practices (BMPs)
- Practical implementation
- Conclusions and perspective
Demand for vegetable oil to double by 2050 (Corley, 2009)

At current yield an extra 12M ha of oil palm needed

Increasingly stringent environmental controls
 - Crop carbon footprint
 - Forest displacement for new development
Why focus on yield intensification?

- For the grower
 - Maximize return on investment
 - Increase IRR and reduce payback period
 - Improved public profile
- For the public and NGOs
 - Efficient use of land occupied by oil palm
 - Spare land (and rainforest) for other uses
BACKGROUND - Site yield potential

- In Indonesia and Malaysia ~35 t ha\(^{-1}\) of fresh fruit bunches = 8 t ha\(^{-1}\) of oil?
- Derived from
 - Fertilizer trials
 - Blocks under long term best management
How to optimize three production phases?

- Shorten time to maturity and peak yield
- Prolong plateau phase
- Reduce rate of decline

After Ng, 1976
Measure change in frequency of yields for soil x palm age groups over time

Reduce variability and increase yield!
Oil palm productivity is very sensitive to environmental stress.
An interval of >36 months elapses between the formation of a flower and the production of a ripe bunch!

Source: Donough, 2008
Potential yield of a progeny under a given soil type and climate

Yield potential of progeny for a given soil and climate

Yield (%) potential

Y-a Y-n Y-mey Y-max
Yield gap 1 caused by deficiencies in planting technique

The graph illustrates the yield gap 1, which is the difference between the maximum economic yield and the yield potential of progeny for a given soil and climate. The yield gap 1 is represented by the area between the maximum economic yield and the yield potential on the graph.
Causes of Yield Gap 1?

- Poor plantation establishment
 - Poor nursery technique and culling
 - Erosion and compaction at land clearing
 - Incorrect planting density or inaccurate lining
 - Failure to replace unproductive palms
 - Poor gap filling at planting
 - Gaps due to palm death
 - Failure to establish legume cover plants
Yield gap 2 caused by nutrient deficiencies

Yield (％potential)

- Yield gap 2
- Yield reduced because of nutrient deficiencies
- Maximum economic yield
- Yield potential of progeny for a given soil and climate

Yield (Y) and potential (Y-potential) relationship.
Causes of Yield Gap 2?

- **Nutrient constraints**
 - Failure to take account of soil variability
 - Faulty leaf sampling
 - Insufficient field inspection to corroborate results of leaf analysis
 - Failure to use long term data trends
 - Failure to make spatial analysis of nutritional trends
Yield gap 3 caused by poor management

Yield (potential)

Yield gap 3

Yield gap 2

Maximum economic yield

Yield potential of progeny for a given soil and climate

Maximum yield

Yield gap 1

Yield reduced because of nutrient deficiencies

Yield reduced because of poor management

Y-a

Y-n

Y-mey

Y-max

24 September, 2010 ©Tropical Crop Consultants Ltd
Causes of Yield Gap 3?

- **Poor harvesting and management**
 - Inadequate infrastructure (mill-to-palm access)
 - Poor round control
 - Poor harvest supervision
 - Failure to implement fertilizer and crop residue application programmes accurately
 - Human resource management
SITE ASSESSMENT - Plot frequency of yields

Focus more attention on blocks with greatest scope for improvement.
Spatial analysis of yield gaps: Are blocks with large yield gaps dispersed or clustered?

Source: Gfroerer, 2009
PRACTICAL IMPLEMENTATION of BMPs

- Pilot phase runs for four years
- Evaluation
 - Productivity
 - Cost benefit analysis
 - Changes required in management
- Broad scale implementation (may begin after one year)
Fertilizer use efficiency is increased with proper spreading
Agronomic database provides quantitative basis for yield maximization

<table>
<thead>
<tr>
<th>Company</th>
<th>Asiatic Persada</th>
<th>BMP: BMP02</th>
<th>Division</th>
<th>DD</th>
<th>Block</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil:</td>
<td>BMP</td>
<td>Topography:</td>
<td>Hilly</td>
<td>YOP 1989</td>
<td>YAP 17</td>
</tr>
<tr>
<td>Previous crop:</td>
<td>2nd forest</td>
<td>Land clearing: Full Man</td>
<td>Density:</td>
<td>135</td>
<td>Area:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Yr</th>
<th>YAP</th>
<th>Pot</th>
<th>Act</th>
<th>Gap</th>
<th>BW</th>
<th>BN</th>
<th>N</th>
<th>P</th>
<th>K</th>
<th>Mg</th>
<th>B</th>
<th>PCS</th>
<th>PH</th>
<th>SPH</th>
</tr>
</thead>
<tbody>
<tr>
<td>05</td>
<td>17</td>
<td>25</td>
<td>28</td>
<td>2.8</td>
<td>23</td>
<td>10</td>
<td>1.4</td>
<td>1.4</td>
<td>1.0</td>
<td>0.9</td>
<td>2.4</td>
<td>2.4</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>04</td>
<td>16</td>
<td>25</td>
<td>27</td>
<td>2.0</td>
<td>20</td>
<td>12</td>
<td>1.6</td>
<td>1.6</td>
<td>0.7</td>
<td>0.7</td>
<td>2.5</td>
<td>2.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>03</td>
<td>15</td>
<td>25</td>
<td>18</td>
<td>-7.0</td>
<td>17</td>
<td>10</td>
<td>0.9</td>
<td>1.0</td>
<td>0.4</td>
<td>0.9</td>
<td>1.2</td>
<td>1.4</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>02</td>
<td>14</td>
<td>25</td>
<td>15</td>
<td>-10.0</td>
<td>14</td>
<td>11</td>
<td>1.7</td>
<td>1.4</td>
<td>1.4</td>
<td>0.9</td>
<td>1.3</td>
<td>2.0</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Manager's comments

Source: Gfroerer, 2009
Excellent standards of management in place in a BMP block.
RESULTS AND CONCLUSIONS
Comparison of BMP and non-BMP blocks over five years

Yield (t ha\(^{-1}\))

Bunch weight (kg)

Bunch number
Results from six sites in Indonesia

- Average yield increase of 3.2 t ha⁻¹ (range 0.4 – 6 t ha⁻¹)
- Average increase in bunch number (114 bunch ha⁻¹) and bunch weight (+1 kg)
- Less difference between sites after BMP implementation

Source: Donough, 2009
BMP works on degraded lands
(anthropic savanna of *Imperatacylindrica*)
Scaling up

- Only where pilot phase reveals economically worthwhile yield improvement
- Stepwise implementation in 1,000-1,500 ha blocks
- Identify all constraints and plan their removal
Conclusions

- Determine potential yield for all sites
- Goal of management is to minimize the gap between achievable and actual yield
- BMP is a step-wise process to close yield gaps
 - Small scale pilot phase
 - Scale up once evidence of gaps available
- Maximum economic yield is the key to profitability and competitiveness
Thank you for your attention!

Tropical Crop Consultants Ltd

www.tropcropconsult.com

www.ipni.net